More cubic surfaces violating the Hasse principle
نویسندگان
چکیده
منابع مشابه
More cubic surfaces violating the Hasse principle
We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.
متن کاملCurves over Global Fields Violating the Hasse Principle
We exhibit for each global field k an algebraic curve over k which violates the Hasse Principle. We can find such examples among Atkin-Lehner twists of certain elliptic modular curves and Drinfeld modular curves. Our main tool is a refinement of the “Twist Anti-Hasse Principle” (TAHP). We then use TAHP to construct further Hasse Principle violations, e.g. among curves over any number field of a...
متن کاملThe Hasse Principle for Pairs of Diagonal Cubic Forms
By means of the Hardy-Littlewood method, we apply a new mean value theorem for exponential sums to confirm the truth, over the rational numbers, of the Hasse principle for pairs of diagonal cubic forms in thirteen or more variables.
متن کاملFailure of the Hasse Principle for Enriques Surfaces
We construct an Enriques surface over Q with empty étale-Brauer set (and hence no rational points) for which there is no algebraic Brauer-Manin obstruction to the Hasse principle. In addition, if there is a transcendental obstruction on our Enriques surface, then we obtain a K3 surface that has a transcendental obstruction to the Hasse principle.
متن کاملAn Explicit Algebraic Family of Genus-one Curves Violating the Hasse Principle
One says that a variety X over Q violates the Hasse prin iple if X(Q v ) 6= ; for all ompletions Q v of Q (i.e., R and Q p for all primes p) but X(Q) = ;. Hasse proved that degree 2 hypersurfa es in P n satisfy the Hasse prin iple. In parti ular, if X is a genus 0 urve, then X satis es the Hasse prin iple, sin e the anti anoni al embedding of X is a oni in P 2 . Around 1940, Lind [Lin℄ and (ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2011
ISSN: 1246-7405
DOI: 10.5802/jtnb.772