More cubic surfaces violating the Hasse principle

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More cubic surfaces violating the Hasse principle

We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.

متن کامل

Curves over Global Fields Violating the Hasse Principle

We exhibit for each global field k an algebraic curve over k which violates the Hasse Principle. We can find such examples among Atkin-Lehner twists of certain elliptic modular curves and Drinfeld modular curves. Our main tool is a refinement of the “Twist Anti-Hasse Principle” (TAHP). We then use TAHP to construct further Hasse Principle violations, e.g. among curves over any number field of a...

متن کامل

The Hasse Principle for Pairs of Diagonal Cubic Forms

By means of the Hardy-Littlewood method, we apply a new mean value theorem for exponential sums to confirm the truth, over the rational numbers, of the Hasse principle for pairs of diagonal cubic forms in thirteen or more variables.

متن کامل

Failure of the Hasse Principle for Enriques Surfaces

We construct an Enriques surface over Q with empty étale-Brauer set (and hence no rational points) for which there is no algebraic Brauer-Manin obstruction to the Hasse principle. In addition, if there is a transcendental obstruction on our Enriques surface, then we obtain a K3 surface that has a transcendental obstruction to the Hasse principle.

متن کامل

An Explicit Algebraic Family of Genus-one Curves Violating the Hasse Principle

One says that a variety X over Q violates the Hasse prin iple if X(Q v ) 6= ; for all ompletions Q v of Q (i.e., R and Q p for all primes p) but X(Q) = ;. Hasse proved that degree 2 hypersurfa es in P n satisfy the Hasse prin iple. In parti ular, if X is a genus 0 urve, then X satis es the Hasse prin iple, sin e the anti anoni al embedding of X is a oni in P 2 . Around 1940, Lind [Lin℄ and (ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux

سال: 2011

ISSN: 1246-7405

DOI: 10.5802/jtnb.772